

The Foundations of Open

∞

Evaluating aspects of openness in
software projects

A collaboration between

Waugh Partners

&

OSS Watch

V2.0

4th October 2007

Table of Contents

 1 Acknowledgements...3

 1.1 The authors...3

 1.2 The contributors..3

 1.3 The license ...3

 2 Introduction..4

 2.1 Openness...4

 2.2 The Foundations of Open...6

 2.3 Closed Systems...6

 3 The Openness Evaluation Model..7

 3.1 Licence..7

 3.1.1 Licence questions..7

 3.2 Standards...9

 3.2.1 Standards questions..10

 3.3 Knowledge..11

 3.3.1 Knowledge...12

 3.4 Governance...14

 3.4.1 Governance questions..15

 3.5 Market...17

 3.5.1 Market questions..18

 1 Appendix – Metrics..20

 1.1 Licence..20

 1.2 Standards...21

 1.3 Knowledge..21

 1.4 Governance...23

 1.5 Market...24

 2 Appendix – Case Studies..26

 2.1 Comparing Kernels...26

 2.2 Comparing Databases...28

 1 Acknowledgements

This paper would not have been possible except for the support of OSS Watch, the collaboration

and input of several individuals and for the initial idea from Waugh Partners of the Foundations of

Openness based on the ideas developed by Pia and Jeff Waugh since 2004.

 1.1 The authors

The two core authors of this paper are Pia Waugh from Waugh Partners and Randy Metcalfe from

OSS Watch, Oxford.

 1.2 The contributors

Many thanks to the people who contributed their comments and modifications to the paper:

● Jeff Waugh from Waugh Partners

● John Ferlito from Vquence

● Ross Gardler from OSS Watch

● Rowan Wilson from OSS Watch

● Stuart Yeates from OSS Watch

And many thanks to:

● William Weinberg from Linux Pundit who provided excellent advice and editing

● John Ferlito from Vquence who provided good input early on in the project

Pia Waugh in collaboration with Randy Metcalfe

Waugh Partners OSS Watch

 1.3 The license

This document is licenced under the Creative Commons Attribution-Share Alike 2.5 Australia

License.

Further details on the license are here - http://creativecommons.org/licenses/by-sa/2.5/au/

http://creativecommons.org/licenses/by-sa/2.5/au/

 2 Introduction

This project explores the notion of openness in software projects. It contextualizes different facets

of openness and considers their individual and collective usefulness. It provides a tentative

evaluative schema to allow others to weigh up specific criteria that may be important to them. It

acknowledges that these criteria may have different weightings for different people, e.g. governance

vs open standards vs code licence. The object is *not* a blanket recommendation for openness in all

facets of a project. Rather it is a tool for projects, and those who use those projects, to investigate

and illuminate the choices being made as well as the implication of open and closed approaches.

We don't presume that a high rating in each aspect of openness guarantees a trustworthy,

sustainable, interoperable, relevant or successful project, but rather indicates an opportunity for

trustworthiness, sustainability and interoperability. The relevance of a project is most strongly

linked with the market need for that functionality, and the success of a project can only ever be

judged by the aims of that project.

This is the first draft of this model, and upon public dissemination of this paper, we will be making

a call for participation from anyone in the technology or software space to participate in the fine

tuning and improvement of this model for general use. We expect this model to be broadly useful in

evaluating any software project and also for projects to self-evaluate and understand the

implications in the different ways they might be open or closed. We have in this paper given

explanations of the basic outcomes of open and closed approaches in the areas of the project

source, standards, knowledge, governance and marketplace, as we found these areas to be key

factors when considering what aspects in projects impact openness.

For this paper we have rated a few projects of interest for comparison and to illustrate the practical

application of the model.

This model may with some small modifications become useful in future for evaluating hardware

and other technology areas of interest. However, for the time being it is focused primarily on

software. It is not meant for evaluating companies.

 2.1 Openness

Openness provides a mechanism for trust. But what exactly is openness? Even the characterization

of openness is rather open. To move forward, therefore, it makes sense to set down some markers

for openness. Openness is important in every major aspect of life, from the process of politics to the

disclosure of ingredients in canned food.

As more of our lives are dependent upon new and proliferated technologies that we use to

communicate, create, vote, share and much more, we must find a way to evaluate technological

openness. Openness in technology impacts the sustainability, applicability, interoperability and

trustworthiness in the system:

● Sustainability is about the longevity and access to systems and data. All of us have

experienced the pain of losing access to data, or the inability to run an old software program

on a new computer. With so much of what we do being created and stored digitally,

sustainability is of major importance, and not just for a few years, but well into our future so

we don't lose knowledge or culture. Sustainability can be improved through the use of

publicly documented data standards, and through a healthy market and community

supporting software that helps ensure easy access to the information. Also public disclosure

of the software source means it is always available for anyone to pick up and use/support,

rather than the risk of being discontinued and thus unavailable at the software end of life, as

happens to most proprietary software. Access to the knowledge around a project, including

technical documentation is also helpful in ensuring the sustainability of a project.

● Applicability is how broadly the software applies to different use cases and needs. Often if

there is a single point of control in software, then there is a single set of aims and use cases

in mind. Individual companies that create a software product can only support so many use

cases, as it would not be economically feasible for one company to try to support every

single possible use case for the software, so inevitably the company caters to the lowest

common denominator, or optimises for a very specific use case. If however the software

allowed project participation through an open governance model and access to project

knowledge, then people can modify the software to meet their own needs, and thus broaden

and improve the applicability of the software. A great example of this capability is in the

case of language localisations. A single company may have a strong market in 5 countries

that speak 7 languages, however an individual that speaks a minority language like

Mongolian can't possibly provide the market opportunity to justify the company investing to

support that language, so it is not available. In the case of a participatory software project,

that same person can either contribute the translations themselves or pay someone external

to the software project to develop the language support making the software more broadly

applicable.

● Interoperability is how systems and data interoperate in a single environment, across

multiple versions of that environment, or across multiple environments. Interoperable

systems can readily communicate, share information, and coexist to perform common or

related functions. Interoperability is vital to large systems such as the Internet, where

millions of computers communicate using common standards of communication protocols,

such as TCP/IP to achieve interoperability. There are times when interoperability isn't

desired, such as for highly secretive systems or for competitive reasons, however

interoperability is generally a useful aim.

● Trustworthiness in technology entails knowing that the system will perform as

documented. A good example of the importance of trustworthiness in software lies in

electronic voting systems. If an electronic voting system is not open at least in terms of

public source code disclosure, then how can voters trust the outcome? This has already

become an issue in America where a proprietary software company, Diebold, ran electronic

voting booths that were alleged to be faulty1, which cast doubt upon the election result. If the

system had been developed in the open under public community scrutiny, then the general

public could check that the system did what it was supposed to and could actually trust the

outcomes. Trustworthiness can be improved through openly available source code, which is

a licensing issue.

1 http://www.eff.org/Activism/E-voting/20030723_eff_pr.php

 2.2 The Foundations of Open

Sustainability, applicability, interoperability, and trustworthiness are facets through which openness

is revealed. The following are broad areas, relevant to software projects, where these facets may

reveal themselves.

● Source – the conditions surrounding the project source code. Usually defined within the

licence terms.

● Standards – the data, communication and other standards used within a project, for

example, APIs, protocols, & documentation norms.

● Knowledge – the documentation, project information, decisions made, communication

archives and any other content related to the project.

● Governance – the structure of the organisation that defines who participates in a project and

the terms of participation. Includes decision making, and any practical or policy limitations

on participation.

● Marketplace – the ability for any organisation to build a business around a project. Includes

practical, legal and technological limitations to building an open marketplace around the

project.

For each aspect we have identified a number of factors that we believe impact the openness of that

aspect.

 2.3 Closed Systems

Generally the more closed any aspect of system is, the greater the extent to which responsibility for

that aspect falls upon a single entity, and thus is introduced as a single point of control. This single

point of control may offer a competitive advantage, greater control over the software development

process, control over who participates in the project, or control over information dissemination. As

well as these competitive advantages, a single point of control also introduces some risks. Risks

include a single point of failure, vendor lock-in, and reduced transparency, interoperability and

broad applicability.

In terms of sustainability, corporate participation in a project generally fosters greater project

sustainability through dedicated resources and support. However, if aspects of a project are limited

to one company or entity, then those risks need to be assessed.

The fact that a system possesses closed aspects may be preferred or unimportant in specific cases.

For example, a company may prefer that a piece of software remains closed in all aspects (apart

from user knowledge) so long as they have access to the source code for bug fixing. Or with

bespoke software that delivers a company competitive advantage in the market, creators/owners

probably don't want that software to be open for use or participation.

 3 The Openness Evaluation Model

The Openness Evaluation Model poses a series of questions based around the Foundations of Open

defined above. Following is an explanation of each area of evaluation followed by a proposed

question set. Please note that every section has an additional questions section with areas of interest

or potential for draft two of the tool. The questions are also included in Appendix 1 with a tentative

set of metrics for each. These have been used to create evaluation case studies. Feedback on these

questions and the areas of evaluation is encouraged. Please send comments to

openness@waughpartners.com.au.

 3.1 Licence

Software is most often covered by copyright. Copyrighted materials are distributed under a variety

of licences. Such licences set parameters and terms for how copyrighted material can and must be

treated. In general licences either augment or limit basic (copy)rights granted under the applicable

copyright law, that is rights to copy, modify, (re)distribute, and in some cases, the terms of actual

use. These parameters or permissions for the licensee (the recipient of licensed material) make

possible more or less open behaviour. A licence may also prohibit certain activities, such as the

combining of materials distributed under this licence with materials distributed under a different

licence or limiting how the software can be used, unless certain specific conditions are met.

Similarly a licence may grant exemptions from patent infringement or impose demands for explicit

public attribution of the licensor if the software is used, modified or redistributed. Clearly, openness

may be enhanced in different ways by different parameters in a licence.

In the broader open development community there are two recognized authorities on licences: the

Free Software Foundation (FSF), which is the maintainer of the Free Software Definition; and the

Open Source Initiative (OSI), which is the maintainer of the Open Source Definition. Software that

is released under an FSF acknowledged free licence is rightly called “free software”. Software that

is released under an OSI-certified licence is rightly called “open source software”. Many licences

meet both sets of conditions.

There are also many licences that may meet either the criteria of the Free Software Definition or the

Open Source Definition, but which have not been acknowledged or certified by either authority.

While these licences may share similar conditions to free or open source software licences, the onus

for deciding whether they do is left to the licensee, the recipient of software wishing either to use it

directly or combine it with other software released under other licences. This can pose legal

complications taxing to legal resources of individuals or institutions.

In addition, there are also licences that are not recognized by either of the authoritative bodies and

would be unlikely to meet the criteria of either the Free Software Definition or the Open Source

Definition. These licences may or may not be represented by someone as either “free” or “open”, or

they may straightforwardly declare themselves to be proprietary licences.

Finally, the range of licences acknowledged by the FSF as free software licences or certified by the

OSI as open source licences is such that there is substantial variation of the conditions for licensees

from one licence to the next. These nuanced differences allow for some exploration of the openness

reflected in these licences. The following questions attempt to draw out some of these differences.

 3.1.1 Licence questions

1. Is the licence either of the following:

mailto:openness@waughpartners.com.au

○ Recognised as a free software licence by the Free Software Foundation

○ Certified as an open source licence by the Open Source Initiative?

○ Both

○ No

Rationale: If the licence has been recognised by either of these bodies, it is more likely to

have been assessed and found to be relatively open than a new licence or one which has not

been OSI or FSF approved.

2. Who has permission to run the software?

○ Anyone may run the software.

○ Anyone but for some specific purpose or but some specific group (i.e. restricted

inclusively) – e.g. no commercial use.

○ Only some specified group may run the software (i.e. restricted exclusively or

proprietary) – e.g. free for education only.

Rationale: If the right to run the software is limited, that limits the recipient base of the

software and thus openness is limited.

3. Who is permitted to examine the human-readable source code of the software?

○ Anyone may examine the human-readable source code of the software.

○ All but some specified group may examine the human-readable source code of the

software i.e. (restricted inclusively).

○ Only some specified group may examine the human-readable source code of the

software (i.e. restricted exclusively or proprietary). For example, a company creating

software released under a proprietary licence where only the employees of that company

have access to the source code.

Rationale: Access to the source code is related to the trustworthiness, the sustainability, the

ability to participate in and many other aspects of software.

4. Who is permitted to adapt or modify the source code of the software?

○ All licensees may adapt or modify the source code of the software.

○ All but some specified group may adapt or modify the source code of the software (i.e.

restricted inclusively).

○ None but some specified group may adapt or modify the source code of the software (i.e.

restricted exclusively or proprietary).

Rationale: The right to modify or adapt the software makes the software more open for

participation and applicability to different use cases.

5. Who is permitted to redistribute the modified or unmodified source code of the software?

○ All licensees may redistribute the modified or unmodified source code of the software.

○ All but some specified group may redistribute the modified or unmodified source code

of the software (i.e. restricted inclusively).

○ None but some specified group may redistribute the modified or unmodified source code

of the software (i.e. restricted exclusively or proprietary).

Rationale: If the right to redistribute changed software is limited then the benefits from

being able to see and change the source are limited to personal use.

6. Does the licence permit sub-licensing of rights?

An example of sub-licensing of rights would be if code released under one licence could be

redistributed in a modified or unmodified form under another licence with different rights. It

doesn't include sub-licensing where rights are not modified.

○ Yes

○ Yes, but conditionally (for example, so long as certain rights are maintained)

○ No

Rationale: Sub-licensing of rights means the licensor is not bound to the rights given to

them and may choose to change the rights according to their need. This may be useful in

certain situations and can provide more open use of the software beyond the original licence

intent.

7. Does the licence also grant a patent licence to the licensee?

An example would be where each contributor of copyright material to the licensed code that

is being distributed grants to the licensee a perpetual license to use that material without

infringing any patent the contributor may hold against that contribution.

○ Yes

○ No

Rationale: Patent waivers are built into some licences and can offer marginally more

protection from patent litigation than no support, however the question is not weighted

heavily as a patent waiver can only be given for patents for which the project has a right or

licence, and there will inevitably be many thousands of patents that exist outside of the

waiver offered.

8. Is the licensee required to make modified or unmodified source code available if they

redistribute the code?

○ Yes

○ Sometimes – For example, the licensee may distribute an executable under another

licence, however anything under this particular licence must have source code available.

○ No

Rationale: There is a difference between the right to access the source code, and the

responsibility of the project to make the source code available. This question is to answer

whether the latter is required.

Additional questions for consideration:

● What are the implications for integration of the source code under this licence with

source code under some other licence? This question might draw out the difference

between the GPL and the LGPL.

● Are there any known patents that significantly limit the project?

● The question of copyright assignment.

● In indemnification available?

● The question of implicit or explicit grants of rights, for instance in the case of

patents.

 3.2 Standards

A standard is an agreed upon set of formal definitions, usually technical ones, created and employed

to ensure interoperability, predictability and consistency with a system or among systems. Some

standards are private to a company or product – these are closed or at best de facto standards. When

a standard is published publicly and its use is not encumbered by royalties and patents, it may be

termed an open standard presenting opportunities for the greatest levels of interoperability and

access. Often enough a neutral publicly recognised standards body is also involved in defining open

standards which can broaden market opportunities, applicability of the standard, and promote

innovation on top of the standard.

Standards are vital to ICT, particularly because so many systems need to interoperate and share

information across very diverse software and hardware environments. A standard in technology

terms typically applies to:

● a data format (e.g. ASCII, HTML)

● communication protocol (e.g. TCP/IP, SMTP)

● the definition of a process (e.g. BizDex)

● a storage format (e.g. CD formats like ISO-9960, DVD)

● a programming language (e.g. ANSI C(X3J11), PHP)

● a development, quality or project management process (e.g. ISO-9001, PRINCE 2)

In technology, a closed -- or unpublished and private -- standard presents substantial barriers to

straightforward integration into other products, technologies, etc. Beyond the actual publishing of a

standard, there are other factors like the conditions of use that may limit a standard, such as access

fees, royalties or patents.

A more open -- or publicly published and easy to access -- standard can be integrated into other

systems, and provide the above benefits. An open, publicly published and unencumbered standard

provides the most open platform for innovation, interoperability, freer markets, long term

sustainability of the standard, and the broadest applicability of the standard.

The following components of a standard relate to its potential:

● Public disclosure of the particulars of standard itself

● Costs associated with acquiring or implementing the standard

● Peer review by a recognised standards or certification body

 3.2.1 Standards questions

1. Is there full public disclosure of the majority of data and communication standards used in

the project?

○ Yes – this means the standard's definition and how it is implemented

○ No

Rationale: Full public disclosure of a standard is the only practical way someone can

implement the standard properly in another system. It is also the only way to future-proof

data and systems and ensure there is always a mechanism to replicate and access the data

or systems.

2. Does the project rely on any closed proprietary standards?

○ No

○ Yes

Rationale: Proprietary standards can limit a project's potential and interoperability. There

are of course some projects that use proprietary standards for interoperability, however this

question is about whether a project could not work without the proprietary standard

depended upon.

3. Are there any costs associated with any standards used?

○ No

○ Acquisition cost but not implementation cost (such as paying to download a standard)

○ Implementation cost (such as a royalty or patent fee)

Rationale: Costs associated with either acquiring the standard documentation or in

implementing the standard are a barrier to entry that limits the potential of the standard.

4. Are the majority of standards used approved and published by any of the following

standards bodies – W3C, IEEE, IETF, OASIS, or ISO?

○ Yes

○ No

Rationale: Industry, de facto and published standards such as the Microsoft doc format can

be popular, however arguably less open than a standard which has gone through a process

of peer review, support and publication by a trusted and international standards

organisation.

5. Does the project use standardised project or development processes such as Agile or

PRINCE 2?

○ Yes

○ No

Rationale: Open project or development processes are good standards to help a project.

6. Does the project support Unicode?

○ Yes

○ No

Rationale: Unicode support means better opportunity for multiple language support.

Additional questions for consideration:

● The question of legal access to standards used – e.g. libdvdcss

● Is the project or project outcome certified? eg -

http://www.linuxdevices.com/news/NS2632432515.html

● Are there any standards used in the project that are unique to the project?

○ Rationale: If a standard is only implemented once, it isn't necessarily a universal

standard but rather a unique instance. More than one implementation of the

standard indicates it is a more open standard.

 3.3 Knowledge

Knowledge in a project may be represented in content such as documentation on a project site or

comments in source code and of course is embodied in the project source code itself. It may be

found in publicly archived email discussion lists, or in a project wiki or discussion forum. The

extent to which the knowledge found in these different contexts may be accessed, used, contributed

to, modified, or redistributed marks the level of openness of a project.

http://www.linuxdevices.com/news/NS2632432515.html

Moreover, if some or all project knowledge is constrained in some way, for example either access to

it is restricted or the possibility of contributing to it is curtailed, then this too is a indication of

relative openness. Of course there exist good arguments for why certain knowledge should be less

open than other knowledge, even within the same project. The following questions attempt to elicit

an awareness of the complex state of the openness of knowledge.

 3.3.1 Knowledge

7. Which publicly available communication or dissemination mechanisms does the project

use?

○ documentation

■ project site documentation

■ design documents or project roadmap

■ machine readable metadata (e.g. RDF)

■ wiki(s)

○ project communication

■ version control system(s)

■ email list(s)

■ online forum(s)

■ chat: IRC/IM/Jabber/etc.

■ issue tracker

Rationale: Multiple documentation and communication components are indicative of at

least the opportunity for project knowledge to exist. There are certainly cases where too

many avenues of knowledge can hurt a project.

8. Does the project discourage major project communications outside the approved channels

selected above?

○ Yes.

○ No.

Rationale: If major project communications are encouraged to be done through the main

channels, then the chance to lose major decision making processes and information

dissemination in private conversations is limited.

9. Is any project knowledge purposely kept private?

○ None.

○ Yes, but solely due to legal or privacy requirements.

○ Yes, above and beyond legal or privacy requirements.

Rationale: The intent to keep knowledge private is not great for knowledge openness,

however there may be specific reasons to keep the knowledge private, such as is the case for

legal or privacy concerns.

10. Who is able to access all the (non-private) project knowledge?.

○ Anyone.

○ Participants (includes contributors and users of the software)

○ Some closed subset of the participants.

Rationale: Apart from any knowledge defined as private, the ability for anyone to acquire

project knowledge is important to their ability to participate as well as for the sustainability

of the project.

Artificial limitations to access:

11. Is there any financial or legal barrier to accessing or acquiring the knowledge of the project?

○ No

○ Yes

Rationale: If there is any legal or financial barrier to accessing knowledge, then that

provides a barrier to entry and participation, and thus makes the project less open.

12. Is there any technological barrier to accessing or acquiring the knowledge of the project?

For example, DRM or deliberate limitation to a specific operating system.

○ No

○ Yes

Rationale: If there is any technological barrier to accessing knowledge, then that provides a

barrier to entry and participation, and thus makes the project less open.

13. Is the knowledge stored in publicly published data formats (with appropriate metadata) that

will make it accessible over time?

○ Yes

○ No

Rationale: If the knowledge is stored in proprietary formats then it is more likely the data

won't be accessible in the long term which is a risk to the long term openness of the project.

14. Is any of the project knowledge available in more than one language?

○ Yes: Over 10 languages

○ Yes: 5-10 languages

○ Yes: 2-5 languages

○ No

Rationale: The previous questions are determining whether there are any artificial

limitations to accessing project knowledge.

15. Who is able to contribute to the project knowledge?

○ Anyone.

○ Only project participants that register through some mechanism.

○ Only some closed group.

Rationale: Understanding who can contribute to the knowledge is a good way of

understanding the potential for participation in the knowledge.

16. Are there public archives of the knowledge and a documented mechanism for data recovery

in the case of data loss?

○ There are publicly available archives of all material

○ There are some or no publicly available archives and there is a documented mechanism

for recovery

○ There are no publicly available archives and there is no documented mechanism for

recovery

Rationale: If there is a single point of loss or failure in the knowledge base, then projects put

themselves at risk of massive and possible permanent interruption.

17. How good is the user-specific public documentation on a scale of 0 to 5 with 5 being easy to

read, access, appropriate for users and generally excellent, and 0 being non-existent.

Rationale: The usability of knowledge is a difficult thing to measure. This could probably be

captured through extensive subjective questions, however asking people to rate the quality is

a good start to understanding and differentiating between base standards of good

documentation and projects that really excel in this area.

18. How good is the developer-specific public documentation on a scale of 1 to 5 with 5 being

easy to read, access, appropriate for users and generally excellent?

19. Are there documentation sources external to the project? This could be external community

documentation or professional publications.

○ No

○ 1-10 sources

○ Over 10 sources

Rationale: The more external sources of documentation, the more knowledge there is

available that is likely done professionally or to cater for extra use cases.

Additional questions for consideration:

● Searchability – access to third party search engines/finding aids? Important for

access?

 3.4 Governance

The governance of a project defines the structure, succession, codes of behaviour, transparency,

accountability, who can participate and the nature and roles of project participants. Some

governance models choose to be relatively closed for reasons of control and/or competitive

advantage. However, an open and public governance model provides opportunity for broader

participation and thus applicability of the project, increased trust in the project, and the chance to

follow project progress. A project with open governance also creates a healthy environment for

development and growth.

Another interesting outcome of many open governance models is the ability to fork a project.

Forking entails the ability of participants or third parties to create a new instance of the code base

and the rest of the project to develop it their own way. Sometimes forking works and sometimes it

doesn't. However, freedom and the opportunity to fork provides insurance against bad leadership or

a stagnant community.

Many of the components listed below may seem excessive for small projects, but are nonetheless

important for future-proofing, improving participation and sustainable growth.

The following components of a governance model relate to its potential:

● Roles and nature of participants

● The structure of a project

● Project governance succession

● Participation of and dissemination of project decisions and direction

● Transparency of the project

● Predictability of outcomes

 3.4.1 Governance questions

1. Is there clear leadership in the project? Leadership may be an individual or group such as a

board.

○ Yes

○ No

Rationale: Clear leadership means a project has a better chance of clear direction and

purpose, and is more likely to avoid leadership contesting and the sort of committee based

decision making which can slow a project down to a grinding halt.

2. Are the structure and policies of the project clearly and publicly documented?

○ Yes – includes all the following:

■ Leadership structure

■ Process for decision making and other project processes

■ The process for becoming a contributor and maintainer

■ The licence of the software

○ Partially and/or only to a limited audience

○ No

Rationale: Public documentation of a project structure and policies increase transparency

and trust in a project.

3. Are there publicly accessible behavioural guidelines for the project?

○ Yes

○ No

Rationale: Provides a public reference by which project members are held accountable.

Encourages a good working environment that is productive and welcoming to newcomers.

4. Is there publicly accessible and easy to find documentation about how to participate in the

project?

○ Yes for using and contributing to the software – contributing to the software is defined as

any activity which adds to the project. Includes code, bug reports, documentation, and

translation

○ Yes, but only for using the software – use is defined as downloading and using the

software as is

○ No

Rationale: The availability of such documentation encourages use and contributions to a

project, so it is important to facilitate new interest in a public fashion. If a project doesn't

make this available it simply makes it more difficult to get involved in any capacity.

5. Is the project leadership elected by the project community? Leadership doesn't include

advisory groups or such where they don't have decision making or voting rights. Leadership

that self-selects does not count.

○ Yes

○ Partially – the other places are reserved for individuals or sponsors

○ No

Rationale: Elected leadership indicates a more openly participatory project. It is true that

many projects have only one maintainer, and thus they are handicapped by this question,

however it is also true that smaller project do not require as open a governance as larger

projects.

6. Who is able to generally contribute to the project development? Contributing to the software

is defined as any activity which adds to the project. Includes code, patches, bug reports,

documentation, and translation.

○ Anyone

○ Participants only or some open registration mechanism

○ Some closed subset of the participants

Rationale: A project may choose to limit who can contribute to a project for various reasons

of control, however this limits the potential of the project.

7. Who is able to become a committer? This is a person who commits code/changes to the

primary project source.

○ Anyone the current committer/s decide on via a documented process

○ Anyone the current committer/s decide on via an informal and completely

undocumented process

○ Only the current committer/s – no documentation on how to become a committer

Rationale: Understanding who is able to become a committer is indicative to the openness

of a project to share responsibility at the code level.

8. Is there a single point of failure or control for committing changes to the primary project

source? Single point of failure/control refers to both the case of a single individual and the

case where all committers work for the one company.

○ No – the responsibility for committing changes to the primary project source is shared

and there is no single point of failure

○ Yes – but there is a documented succession process

○ Yes – and there is no documented succession process

Rationale: A single point of failure/control for committing changes to the codebase provides

the opportunity for massive project disruption, whether it be through an individual not

having time or in all committers working for the one company and introducing the risk of

hostile takeover. If there is a single point of failure, either individual or company-wise, a

documented succession plan can make the difference between seamless progress of the

project or a major disruption.

9. Who is able to get practical access to and use the software?

○ Anyone – the software is publicly and freely available

○ Anyone but a specific group (e.g. anyone but companies wanting to commercialise)

○ Only a specific group (e.g. only people in education, or only those forced to register for

access)

Rationale: The terms of use in the licence of a project does not mean that in actual practice

the software is publicly and openly available for public use. the more barriers to entry for

use of the software, the less open.

10. Is the software release cycle (including snapshots and major releases):

○ Consistent and predictable

○ Inconsistent or unpredictable

○ Inconsistent and unpredictable

Rationale: A project that is predictable and consistent is more likely to encourage regular

community participation and interest than a project that is inconsistent and unpredictable.

11. Is it easy to acquire, build, configure and install the source code from scratch?

○ Yes – anyone has full access to the source code and can build and install

○ Yes – but with some technical or access limitations

○ No – Source code is hard to acquire or hard to build and install

Rationale: If the codebase is unable to be openly forked, then the project can be held

ransom to bad leadership or hostile takeover.

12. Is there an avenue and structure for recourse beyond the project maintainer/s?

○ Yes – there is a person or body where issues can be escalated

○ No

Rationale: If there is no avenue for recourse, the project relies on the good will of the

maintainer, and thus opens up the likelihood of forking under bad leadership.

Additional questions for consideration:

● Question about development methodologies? Perhaps build in some metrics based on

tried and trusted development methodologies?

● Maintainers vs committers? What is the most open process of becoming each and

should both be included or just committers?

 3.5 Market

An open and competitive market is important to innovation, quality services and products, and

ultimately to interoperability and economic growth. Opportunities to build a business around a

project can be limited by technical, philosophical and other barriers, and projects can present

multiple revenue/business models to project participants and/or third parties depending on the

nature of the project and the technology involved. Also having more companies participating

directly or indirectly in the project increase the likelihood of its being commercially viable and thus

more open to building a business on.

The following components of a project relate to its market potential:

● amount of funded development

● breadth of applicability of project

● avenues for competitive differentiation

● setup costs and barriers to entry for building a business around the project

 3.5.1 Market questions

1. Are there any costs or barriers to setting up a business around the project? For example

trademarks, patents, royalties, etc.

○ No

○ Yes – a set once off cost

○ Yes on a per user or percentage of revenue basis

Rationale: The higher the costs of setup, the higher the barrier to entry for creating an open

market around the project. Also a set cost is far less an overhead than ongoing costs such as

royalties or patents.

2. Are there any technical barriers of entry to setting up a business around the project?

○ No

○ Yes – such as DRM, proprietary hardware or other software to make it work

Rationale: Technical barriers to entry reduce the ease of building an open market around

the project.

3. Are more than 50% of the core developers from the one company, institution or department?

○ No

○ Yes

Rationale: If so this gives one company a potential market advantage over competitors.

4. How many contributors have some or all of the time they spend on the software paid for?

○ More than 5 people

○ 1-5 people

○ None

Rationale: The more contributors that are able to work on a project with business support,

generally the more market ready it is.

5. Is the project applicable to more than one industry?

○ Yes – for example a web server, or training tool

○ No – for example a specific analysis tool that is only used in one industry and isn't

applicable beyond that

Rationale: If the software is only applicable to one industry, the market opportunities are

limited.

6. How many of the following revenue models are available to a new business looking to build

a revenue stream around the project?

○ More than 5

○ 1 to 5

○ None

■ Customisation

■ Support and maintenance

■ Hosted services

■ Implementation/deployment services

■ Training

■ Dual licensing

■ Localisation/internationalisation

■ Consulting

■ Proprietary components

Rationale: The more revenue models that are available the better the opportunity for

building a market. The more businesses that are already involved, the more the project is

already succeeding in the broader market space.

7. How many organisations offer commercial software development and code customisation

services on the project?

○ More than 5

○ 2 to 5

○ 1

○ None

Rationale: The more business are already offering services around the project, the more

open it most likely is for a new project to come along and build a business.

Additional questions for consideration:

● The ability to create a competitive differentiator? Good or bad thing?

● Dual licensing – implies a single point of copyright ownership and thus the issue

arises about a company having the opportunity to exert control over a market by

being able to relicense, or limit commercial opportunities of competitors.

● Interdependence of difference applications and the market opportunities?

● Whether specific features are only available in proprietary format and what that

means in creating an even playing field.

 1 Appendix – Metrics

The following is a draft set of metrics for the question set. These weightings were used for the case

studies of projects that follow. We anticipate that these weightings may change following input from

the wider community. We also anticipate that different weightings may be applicable on different

evaluative occasions.

 1.1 Licence

1. Is the licence either of the following:

○ Recognised as a free software licence by the Free Software Foundation

○ Certified as an open source licence by the Open Source Initiative?

○ Both

○ No

3

3

3

0

2. Who has permission to run the software?

○ Anyone may run the software.

○ Anyone but for some specific purpose or but some specific group (i.e.

restricted inclusively) – e.g. no commercial use.

○ Only some specified group may run the software (i.e. restricted

exclusively or proprietary) – e.g. free for education only.

3

2

1

3. Who is permitted to examine the human-readable source code of the

software?

○ Anyone may examine the human-readable source code of the software.

○ All but some specified group may examine the human-readable source

code of the software i.e. (restricted inclusively).

○ Only some specified group may examine the human-readable source

code of the software (i.e. restricted exclusively or proprietary).

3

2

1

4. Who is permitted to adapt or modify the source code of the software?

○ All licensees may adapt or modify the source code of the software.

○ All but some specified group may adapt or modify the source code of

the software (i.e. restricted inclusively).

○ None but some specified group may adapt or modify the source code of

the software (i.e. restricted exclusively or proprietary).

3

2

1

5. Who is permitted to redistribute the modified or unmodified source code of

the software?

○ All licensees may redistribute the modified or unmodified source code

of the software.

○ All but some specified group may redistribute the modified or

unmodified source code of the software (i.e. restricted inclusively).

○ None but some specified group may redistribute the modified or

unmodified source code of the software (i.e. restricted exclusively or

proprietary).

3

2

1

6. Does the licence permit sub-licensing of rights?

○ Yes

○ Yes, but conditionally (for example, so long as certain rights are

maintained)

○ No

3

1

0

7. Does the licence also grant a patent licence to the licensee?

○ Yes 1

○ No 0

8. Is the licensee required to make modified or unmodified source code

available if they redistribute the code?

○ Yes

○ Sometimes – such as the licensee may distribute an executable under

another license; however anything under this particular licence must

have source code available.

○ No

3

1

0

 1.2 Standards

1. Is there full public disclosure of the majority of data and communication

standards used in the project?

○ Yes – this means the standard's definition and how it is implemented

○ No

3

0

2. Does the project rely on any closed proprietary standards?

○ No

○ Yes

3

0

3. Are there any costs associated with any standards used?

○ No

○ Acquisition cost but not implementation cost (such as paying to

download a standard)

○ Implementation cost (such as a royalty or patent fee)

3

1

0

4. Are the majority of standards used approved and published by any of the

following standards bodies – W3C, IEEE, IETF, OASIS, or ISO?

○ Yes

○ No

3

0

5. Does the project use standardised project or development processes such as

Agile or PRINCE 2?

○ Yes

○ No

1

0

6. Does the project support Unicode?

○ Yes

○ No

2

0

 1.3 Knowledge

1. Which publicly available communication or dissemination mechanisms

does the project use?

○ documentation

■ about the project

■ design documents or project roadmap

■ machine readable metadata (e.g. RDF)

■ wiki(s)

○ project communication

■ version control system(s)

up to 2

up to 2

■ email list(s)

■ online forum(s)

■ chat: IRC/IM/Jabber/etc.

■ issue tracker

2. Does the project discourage major project communications outside the

approved channels selected above?

○ Yes

○ No

1

0

3. Is any project knowledge purposely kept private?

○ None.

○ Yes, but solely due to legal or privacy requirements.

○ Yes, above and beyond legal or privacy requirements.

3

2

1

4. Who is able to access all the (non-private) project knowledge?.

○ Anyone.

○ Participants (includes contributors and users of the software)

○ Some closed subset of the participants.

2

1

0

5. Is there any financial or legal barrier to accessing or acquiring the

knowledge of the project?

○ No

○ Yes

1

0

6. Is there any technological barrier to accessing or acquiring the knowledge

of the project?

○ No

○ Yes

1

0

7. Is the knowledge stored in publicly published data formats (with

appropriate metadata) that will make it accessible over time?

○ Yes

○ No

1

0

8. Is any of the project knowledge available in more than one language?

○ Yes: Over 10 languages

○ Yes: 5-10 languages

○ Yes: 2-5 languages

○ No

3

2

1

0

9. Who is able to contribute to all the public project knowledge?

○ Anyone.

○ Only project participants that register through some mechanism.

○ Only some closed group.

2

1

0

10. Are there public archives of the knowledge and a documented mechanism

for data recovery in the case of data loss?

○ There are publicly available archives of all material

○ There are some or no publicly available archives and there is a

documented mechanism for recovery

○ There are no publicly available archives and there is no documented

mechanism for recovery

3

2

1

11. How good is the user-specific public documentation on a scale of 0 to 5

with 5 being easy to read, access, appropriate for users and generally

0-5

excellent, and 0 being non-existent.

12. How good is the developer-specific public documentation on a scale of 1 to

5 with 5 being easy to read, access, appropriate for users and generally

excellent?

0-5

13. Are there documentation sources external to the project? This could be

external community documentation or professional publications.

○ No

○ 1-10 sources

○ Over 10 sources

0

1

2

 1.4 Governance

1. Is there clear leadership in the project? Leadership may be an individual or

group such as a board.

○ Yes

○ No

3

0

2. Are the structure and policies of the project clearly and publicly

documented?

○ Yes – includes all the following:

■ Leadership structure

■ Process for decision making and other project processes

■ The process for becoming a contributor and maintainer

■ The licence of the software

○ Partially and/or only to a limited audience

○ No

2

1

0

3. Are there publicly accessible behavioural guidelines for the project?

○ Yes

○ No

2

0

4. Is there publicly accessible and easy to find documentation about how to

participate in the project?

○ Yes for using and contributing to the software – contributing to the

software is defined as any activity which adds to the project. Includes

code, bug reports, documentation, and translation

○ Yes, but only for using the software – use is defined as downloading and

using the software as is

○ No

2

1

0

5. Is the project leadership elected by the project community? Leadership

doesn't include advisory groups or such where they don't have decision

making or voting rights. Leadership that self-selects does not count.

○ Yes

○ Partially – the other places are reserved for individuals or sponsors

○ No

2

1

0

6. Who is able to generally contribute to the project development?

Contributing to the software is defined as any activity which adds to the

project. Includes code, patches, bug reports, documentation, and translation.

○ Anyone

○ Participants only or some open registration mechanism

2

1

○ Some closed subset of the participants 0

7. Who is able to become a committer? This is a person who commits

code/changes to the primary project source.

○ Anyone the current committer/s decide on via a documented process

○ Anyone the current committer/s decide on via an informal and

completely undocumented process

○ There is no documentation on how to become a committer and no

openness to the process

3

2

1

8. Is there a single point of failure or control for committing changes to the

primary project source? Single point of failure/control refers to both the

case of a single individual and the case where all committers work for the

one company.

○ No – the responsibility for committing changes to the primary project

source is shared and there is no single point of failure

○ Yes – but there is a documented succession process

○ Yes – and there is no documented succession process

2

1

0

9. Who is able to get practical access to and use the software?

○ Anyone – the software is publicly and freely available

○ Anyone but a specific group (e.g. anyone but companies wanting to

commercialise)

○ Only a specific group (e.g. only people in education, people who have

to register for access or paying customers only)

2

1

0

10. Is the software release cycle (including snapshots and major releases):

○ Consistent and predictable

○ Inconsistent or unpredictable

○ Inconsistent and unpredictable

2

1

0

11. Is it easy to acquire, build, configure and install the source code from

scratch?

○ Yes – anyone has full access to the source code and can build and install

○ Yes – but with some technical or access limitations

○ No – Source code is hard to acquire or hard to build and install

2

1

0

12. Is there an avenue and structure for recourse beyond the project maintainer/

s?

○ Yes – there is a person or body where issues can be escalated

○ No

2

0

 1.5 Market

1. Are there any costs or barriers to setting up a business around the project?

For example trademarks, patents, royalties, etc.

○ No

○ Yes – a set once off cost

○ Yes on a per user or percentage of revenue basis

3

1

0

2. Are there any technical barriers of entry to setting up a business around the

project?

○ No

○ Yes – such as DRM, proprietary hardware or other software to make it

1

0

work

3. Are more than 50% of the core developers from the one company,

institution or department?

○ No

○ Yes

1

0

4. How many contributors have some or all of the time they spend on the

software paid for?

○ More than 5 people

○ 1-5 people

○ None

3

2

1

5. Is the project applicable to more than one industry?

○ Yes – for example a web server, or training tool

○ No – for example a specific analysis tool that is only used in one

industry and isn't applicable beyond that

2

0

6. How many of the following revenue models are available to a new business

looking to build a revenue stream around the project?

○ More than 5

○ 1 to 5

○ None

■ Customisation

■ Support and maintenance

■ Hosted services

■ Implementation/deployment services

■ Training

■ Dual licensing

■ Localisation/internationalisation

■ Consulting

■ Proprietary components

2

1

0

7. How many organisations offer commercial software development and code

customisation services on the project?

○ More than 5

○ 2 to 5

○ 1

○ None

3

2

1

0

 2 Appendix – Case Studies

 2.1 Comparing Kernels

As a test of the metric, we compared three well known Open Source kernels using the questions

defined in Appendix 12.

Licence

Standards

Knowledge Governance

Market

Comparing Kernels
Linux Kernel 2.6

FreeBSD

Open Solaris

As you can see, all the Kernels examined do quite well generally. All three are very open in terms of

the licences, standards and market readiness, however all three fall down just slightly on knowledge

and governance.

The GPL, BSD and CDDL licences used for these three projects are very different and grant

different rights. Each licence in their own way is more open than the others. The GPL does this by

ensuring that modifications are made available. Although not a way of ensuring the code goes back

into the project it is still better than nothing for getting positive modifications out into the open. The

BSD, by allowing effective re-licensing allows a great amount of freedom on the part of the

developer, and thus is open in a different way. The CDDL, by allowing relicensing (of binaries

only) but makes source code be made available under the CDDL license itself. It has optional

freedoms to both relicense and share code.

All three projects do well in standards and none are bound to proprietary or costly standards. Open

Solaris does rate slightly higher as it clearly uses formal and documented development processes.

All three projects are fairly open in terms of knowledge, with FreeBSD doing better overall with

more language support and better user documentation. Open Solaris had the best developer

documentation, the Linux Kernel had the best data parity with many mirrors of the knowledge base

2 These comparisons are based on publicly available information. Project self-evaluation using these metrics may

have access to further information that might alter the results shown here.

but had relatively difficult documentation for users or developers. Neither Open Solaris nor the

Linux Kernel had the knowledge available in many languages.

All three projects are not as high rating in Governance as they could be, but for different reasons.

Posted below are the actual numbers. The Linux Kernel has Governance issues because of no clear

succession and the path to becoming a committer being limited (Linus is the only actual committer).

Open Solaris has Governance issues due to the core committers being all within the one company

with no clear process to becoming one. FreeBSD has no clear code of acceptable behaviour and the

process to becoming a committer is unclear (basically you need to be recommended by an existing

committer but can't directly apply through any clearly documented process).

All three did very well on market openness, with Open Solaris falling down only slightly due to the

current status of the core developers all being in the one company and only one company currently

offering major services around the project. As the Open Solaris community develops, this issue will

disappear.

Below are the actual answers to the questions for the kernel comparison for information and

comparison:

Licence Standards Knowledge Governance Market

Question 1 2 3 4 5 6 7 8 Totals % 1 2 3 4 5 6 Totals % 1 2 3 4 5 6 7 8 9 10 11 12 13 Total % 1 2 3 4 5 6 7 8 9 10 11 12 Total % 1 2 3 4 5 6 7 Total %

Maximum 3 3 3 3 3 3 1 3 22 3 3 3 3 2 2 16 4 1 3 2 1 1 1 1 2 3 5 5 2 31 3 3 2 2 2 2 3 2 2 2 2 2 27 3 1 1 3 2 2 3 15

Linux Kernel 2.6 3 3 3 3 3 0 0 3 18 0.82 3 3 3 3 0 2 14 0.88 4 1 2 2 1 1 1 0 2 3 1 2 2 22 0.71 3 2 2 2 0 2 1 1 2 1 2 0 18 0.67 3 1 1 3 2 2 3 15 1

FreeBSD 3 3 3 3 3 3 0 0 18 0.82 3 3 3 3 0 2 14 0.88 4 0 2 2 1 1 1 3 2 2 4 3 2 27 0.87 3 2 0 2 2 2 2 2 2 1 2 1 21 0.78 3 1 1 3 2 2 3 15 1

Open Solaris 3 3 3 3 3 1 0 1 17 0.77 3 3 3 3 1 2 15 0.94 4 1 2 2 1 1 1 0 2 2 2 4 1 23 0.74 3 2 2 2 2 2 1 0 2 1 2 1 20 0.74 3 1 0 3 2 2 1 12 0.8

 2.2 Comparing Databases

Below we compare two well known Open Source databases and a well known proprietary database

to show how the model applies to both proprietary and Open Source software using the questions

defined in Appendix 13.

3 Again, these comparisons are based on publicly available information. Project self-evaluation using these metrics

may have access to further information that might alter the results shown here.

Licence

Standards

Knowledge Governance

Market

Comparing Databases
PostgreSQL

MySQL (GPl)

Oracle DB

The two Open Source projects do generally better than the proprietary database, however none of

the projects have particularly well documented governance models.

The GPL, BSD and a proprietary licence is used for these three projects and very different and grant

different rights. The GPL does well by ensuring the modifications are made available. Although not

a way of ensuring the code goes back into the project is still better than nothing for getting positive

modifications out into the open. The BSD does well by allowing effective re-licensing allows a

great amount of freedom on the part of the developer, and thus is open is a different way. The

proprietary licence is no open in any useful way for end user rights.

All three appeared to do well in standards.

The two Open Source projects did far better in knowledge, and PostgreSQL had better overall

documentation than MySQL.

The two Open Source projects did far better in project governance than the proprietary project,

however neither of the Open Source projects had particularly good governance documentation, and

MySQL lost some points for having all it's committers/maintainers in the one company.

All three did relatively well in the market vector, with Oracle losing some points due to the inability

for new companies to independently create business doing software modifications around their

software as they don't have access or rights to the source code. MySQL and Oracle both lost some

points due to projects being largely influenced by the commercial direction of those companies with

more than 50% of the core developers being from those companies. This removes some commercial

impetus and advantages for new companies to build a business around those projects. PostgreSQL

did the best as it has the largest market opportunity according to these metrics.

Licence Standards Knowledge Governance Market

Question 1 2 3 4 5 6 7 8 Totals % 1 2 3 4 5 6 Totals % 1 2 3 4 5 6 7 8 9 10 11 12 13 Total % 1 2 3 4 5 6 7 8 9 10 11 12 Total % 1 2 3 4 5 6 7 Total %

Maximum 3 3 3 3 3 3 1 3 22 3 3 3 3 2 2 16 4 1 3 2 1 1 1 1 2 3 5 5 2 31 3 2 2 2 2 2 3 2 2 2 2 2 26 3 1 1 3 2 2 3 15

PstgreSQL 3 3 3 3 3 3 0 0 18 0.82 3 3 3 3 0 2 14 0.88 4 0 2 2 1 1 1 3 1 2 5 5 2 29 0.94 3 2 0 2 0 1 2 2 2 1 2 0 17 0.65 3 1 1 3 2 2 3 15 1

MySQL (GPL) 3 3 3 3 3 0 0 3 18 0.82 3 3 3 3 0 2 14 0.88 3 0 2 1 1 1 1 2 1 2 4 4 2 24 0.77 0 1 0 2 0 1 1 0 2 2 2 0 11 0.42 3 1 0 3 2 2 3 14 0.93

Oracle DB 0 1 1 1 1 0 0 0 4 0.18 3 3 3 3 0 2 14 0.88 2 0 1 0 1 1 1 0 0 2 2 0 2 12 0.39 0 1 0 1 0 0 1 0 0 1 0 0 4 0.15 0 1 0 3 2 1 1 8 0.53

	 1 Acknowledgements
	 1.1 The authors
	 1.2 The contributors
	 1.3 The license			

	 2 Introduction
	 2.1 Openness
	 2.2 The Foundations of Open
	 2.3 Closed Systems

	 3 The Openness Evaluation Model
	 3.1 Licence
	 3.1.1 Licence questions
	 3.2 Standards
	 3.2.1 Standards questions
	 3.3 Knowledge
	 3.3.1 Knowledge
	 3.4 Governance
	 3.4.1 Governance questions
	 3.5 Market
	 3.5.1 Market questions

	 1 Appendix – Metrics
	 1.1 Licence
	 1.2 Standards
	 1.3 Knowledge
	 1.4 Governance
	 1.5 Market

	 2 Appendix – Case Studies
	 2.1 Comparing Kernels
	 2.2 Comparing Databases

